8 research outputs found

    Multiple Attribute Decision Making with Interval Uncertainty for Artillery Recoil Resistance

    Get PDF
    To reduce loads acting on artillery carriages and obtain better values of recoil resistance, a study on multiple attribute decision making with interval uncertainty of the liquid orifice of a recoil mechanism was conducted. Taking the dimensions of the liquid orifice as the uncertainty variables, the uncertainty optimization model and algorithm based on three parameter interval were used to achieve the optimization schemes of the throttling bar outer dimensions with different tolerance grades. The multiple optimization schemes were sorted by employing the multiple attribute decision making method, in which the attribute weights were determined based on the maximum deviation method. The results show that the optimal design scheme is the one which considers simultaneously the parameter design and tolerance design of the throttling bar outer diameters. The optimal interval of the recoil resistance peaks and the optimal recoil resistance curve with sufficient fullness and flatness were obtained. The study results are beneficial for artillery design and evaluation concerning both the manufacturability of artillery and particular requirements of recoil resistance
    corecore